

Saving Your Own Vegetable Seeds Part I

AVRDC – The World Vegetable Center Global Technology Dissemination Wuu-Yang (Willie) Chen

Outline

- Reproduction of plants
- How to produce and harvest seeds
- Hands-on practicum

Modes of Reproduction in Plants

Sexual reproduction

- Involves male (pollen) & female (egg) flowers
- Pollination produces seeds which grow into new plants
- Ex. tomato, pepper

Vegetative reproduction

- Sex (flowers) is not involved
- New plants develop from a portion of plant body
- Ex. sweet potato, banana

Seeds

- Dry seeds
- Wet seeds with mucilaginous coating
- Wet seeds without mucilaginous coating

Cuttings

-50-100 cm stem

-Upper 20-30 cm terminals

-Survives better when older leaves are trimmed

Rhizomes/Corms

Bulbs/Tubers

How to Save Vegetable Seeds

Selection Criteria

- Traits subject to selection
 - Seedling color
 - Leaf shape, size
 - Disease susceptibility
 - Insect pest tolerance
 - Flowering time
 - Pollen fertility
 - Plant habit
 - Fruit shape, color, size
 - Earliness of fruit maturity
 - Taste, texture
 - Yield

Selection Strategies

- Negative selection (remove off-types due to mutation, out crossing, segregation)
 - Roguing
- Positive selection
 - Bulk (mass) selection (bulk at least 30 plants)
 - Half sib selection:
 - Select individual plants, save seed separately
 - Grow out in rows
 - Bulk seed only from rows with acceptable overall performance
 - Progeny testing

Selection Strategies

 Negative selection (remove off-types due to mutation, out crossing, segregation)

Measure Moisture Content

- Carefully weigh a sample of seed (Wb)
- Dry at 100-120°C for several hours
- Weigh sample again (Wa): weight lost is moisture
- % moisture = $\frac{Wb Wa}{Wb} \times 100\%$

Parts of a Perfect Flower

Male reproductive organ: stamen (anther, filament)

Female reproductive organ: pistil (stigma, style, ovary)

Producing New Seeds Through Pollination: Basic Steps

- Anther releases pollen
- Pollen lands on stigma
- Pollen grows down the style to the ovary
- Pollen fertilizes an ovule to form a zygote (new individual)
- Seed maturation

Producing New Seeds Through Pollination

http://www.emunix.emich.edu/~ghannan/systbot/doublefertanimation.html

Modes of Pollination

Self-pollination

- Pollen grains from anther of a given plant fall on the stigma of the same flower (perfect flower)
- Pollen grains from a flower of one plant fall on the stigmas of other flowers of the same plant

Cross-pollination

Pollen grains from a flower of one plant fall on the stigmas of flowers of another plant

Can you identify the Capsicum flower parts on the left using the diagram on the right?

AVRDC

The World Vegetable Center

Can you identify the eggplant flower parts on the left using the diagram on the right?

The World Vegetable Center

AVRDC

Some Vegetable Crops Have Separate Female and Male Flowers – example, squash

AVRDC The World Vegetable Center

What are Open-Pollinated Varieties?

- Crop can be self-pollinated or crosspollinated.
- Plants are allowed to pollinate freely, and seed can be harvested from all plants.
- Farmers can keep the seeds for next cropping season.

Can you keep seeds of hybrids for next cropping season?

How to Keep Seed Pure

- Isolation in distance
- Bagging
- Caging

Isolation Distance

- Separation from similar crops minimizes
 - Cross pollination by airborne pollen, insects
 - Risk of physical admixture
 - Recommended distance varies with crop, surrounding vegetation, wind patterns,
 - Time isolation may also be possible

(H. Van de Berg, 2004. Small-scale seed production, Agrodok, ©Agromisa Foundation, Wageningen, 2004.)

Avoid Admixture

- Keep all containers thoroughly clean
- Keep work area and tools cleanded, swept
- Label or mark all containers with cultivar name and harvest date, etc.
- Store different varieties separately

Recommended Isolation Distances for Seed Production

he World Vegetable Center

- 50 meters (self pollinated; avoid physical mixing)
 - Bean, chicory, endive, Lettuce, Pea, Tomato
- 200 + meters (insect borne pollen):
 - Asparagus, Cabbage and brassicas, Carrot, Celery, cucumber, Eggplant, Melons, Onion Parsley, Pepper, Squash
- 2 km or more (airborne pollen)
 - Beet, Corn, Spinach, Swiss Chard

Vegetables Needing Vernalization to Produce Seed Stalks

- Beet
- Brussels Sprouts
- Cabbage
- Carrot
- Celery
- Chard, swiss
- Collard
- Florence Fennel

- Kale
- Leek
- Onion
- Parsley
- Parsnip
- Radish (winter type)

The World Vegetable Center

- Rutabega
- Turnip

Seed Drying

- Reduce moisture gently, by air flow under sun
- Low heat dryer (max. 45-50°C)
- Dessicant in air-tite container (e.g. calcium chloride in glass jar)-keep physically separated from seed
- Seed will reach equilibrium with atmosphere in a few weeks

Seed Quality Factors

- Moisture content
- Cleanliness (purity)
 - Dirt, debris
 - Weed Seed
- Viability and Vigor
- Seed Health
 - Seed borne pathogens

Seed Quality

Storing Seeds

- Humidity
- Darkness
- Temperature

Seed Storage Environment

"the sum of the percentage relative humidity plus the temperature in degrees Fahrenheit should not exceed 100." (Harrington, 1972)

$RH(\%) + T(^{0}F) \le 100$

Vapor Proof Packaging

- Cans, glass, foil packs can maintain moisture equilibrium at varying temperatures
- Seeds need to be dried to lower moisture content before sealing

Seed Storage Room or Cabinets

- Heavily insulated
- Good temperature and humidity control
 - Target maintaining seed at < 8% moisture content
 - Temperature (°F) + Relative Humidity (%RH) ≤100
 - Seed life doubled for each 1% reduction in moisture content (between 6 and 16%)
 - Seed life halved for each 5°C increase in temperature (between 0 and 50°C)
 - Cooling, dehumidification, monitoring circuits
- Volume capacity needed will grow over time.
- Moisture-proof containers will help, if seed is initially dried to low moisture contents

Evaluation of Germination Test

- If you are saving seed to grow next year, it is important to know that they will sprout when you want them to.
- Whether it is seed you saved, or those received from a gardening friend, make sure to do a germination test sometime before planting.

Germination

- Germination is defined as:
 - "the emergence and development from the seed embryo of those essential structures which are indicative of the ability to produce a normal plant under favorable conditions."
- The purpose of laboratory testing of seed germination are:
 - to assess seed quality or viability
 - to predict performance of the seed and seedling in the field

Top of Pepper Method

Procedure:

- 1. Place water absorbent material inside the waterproof tray
- 2. Wet the water absorbent material and allow free water to drip off for a minute.
- 3. Count out 20 seeds from each sample and place them on absorbent material inside the tray
- 4. Record the number of germinated seeds
- 5. Compute germination test for **5 days** and for **10 days**

• Note:

- The size sample depends on the size of the seed lot but usually 20 to 100 seeds are germinated.
- Each day check that absorbent material remains moist.

Germination Rate Test

• Cabbage as an example

1 day

4 day

5 day

Calculating the Germination Rate

 Germination rate is the average number of seeds that germinate over the five and ten day periods.

Tomato

• Production:

- Grow best in dry season
- Day 21-25°C, night 15-20°C
- Avoid field where the previous crop was tomato; this prevents the new seed crop from being contaminated with seeds from volunteer tomato plants
- Growing tomato after paddy rice reduces the incidence of diseases and nematodes

Tomato

Isolation:

- Usually not needed
- Perfect, self-pollinating flowers

• Selection:

- Look for early maturing and attractive plants
- Resistance to disease

• Harvesting:

 Allow tomatoes to completely ripen on the plant before harvesting for seed

Tomato

Processing: (Video)

Fermentation 25-30°C for 2-3 days

Hands-on Practicum

Germination test

Hands-on Practicum

Tomato seeds extraction (I)

AVRDC The World Vegetable Center

THANK YOU!